
Class of

Infrastructures for
Cloud Computing and Big Data M

University of Bologna

Dipartimento di Informatica –

Scienza e Ingegneria (DISI)

Engineering Bologna Campus

Global Data Storage

Antonio Corradi

Academic year 2020/2021

Modern global systems need new tools for data storage
with renovated level of quality

We have seen distributed file systems:

• Google File System (GFS)

• Hadoop file system (HDFS)

But we ask for less conventional NoSQL Distributed
storage systems based on new principles, such as

• Cassandra

• MongoDB

These tools are within the trend of NoSQL (Not only SQL)

support (not only the query language but the whole of the

data support) as the entire support infrastructure

OUTLINE

Data Storage 2

Modern global systems require reconsidering the big data

repositories, in strategies and mechanisms

We tag that

as NoSQL

Trend

All

proposals

started

around

2010

NOSQL MOVEMENT

Data Storage 3

We speak about new big data stores and infrastructures with a

set of novel requirements:

• scalability

• efficiency of service on large volume of data

• high availability and fault tolerance

• new data consistency strategies (eventual consistency)

• new way of data tagging (no schema)

So they ask for:

• more flexible schema-less data models

• weak consistency toward high availability and correct configuration

• keep high replication in close storage so not to move data around DC

• clever use of distributed indices, hashing and caching

• datacenter friendly partitioned across local and remote servers

• a web-friendly access through a simple client interface

NOSQL MOTIVATIONS

Data Storage 4

NOSQL NO RELATIONSHIPS

Data Storage 5

Cloud is typically organized in different remote Data Centers

that can host the new stores

They must be organized carefully to favor the local intra-

DC organization and the inter-DC infrastructure

• Any family of data must be based on replication widely

localized: several copies in different DCs and several in

anyone of them

• Any DC must optimize access to its copies and should have

some mechanisms to ease the access (key-values, DHT,

local ring configuration, …)

• Some policies for configuration must be decided and

actuated (out of band, before data access) and also data

operations must be monitored and controlled during

execution (in band monitoring, dynamic reconfiguration, ….)

DATA CENTER ORGANIZATION

Data Storage 6

• Key-Value Stores

data are managed as (key, value) pairs stored in efficient and

scalable ways (typically as in DHT)

Redis, Oracle NoSQL, DynamoDB, Cosmos DB, …

• Wide-Column Stores

data are represented in a tabular format of rows and column

families stored per column-family dynamically and flexibly

Cassandra, BigTable, HyperTable, Hbase, …

• Document Stores

extended key-value stores with value as a document

encoded in standard formats (XML, JSON, or BSON)

MongoDB, CouchDB, ComsoDB, Firebase, …

• Graph Stores

graphs for storing data efficiently and providing effective

operations

Neo4j, Giraph, Virtuoso, ArangoDb, Titan, AllegroGraph, …

NOSQL DATA MODELS

Data Storage 7

This abstraction is a dictionary data structure organized
for easing the operations by key I/O

Giving the key, you get the content fast via insert,
lookup, and delete by key

e.g., hash table, binary tree

The main property is the requirement of being distributed
in deployment, and scalable

• Distributed Hash Tables (DHT) in P2P systems

• It is not surprising that key-value stores reuse many
techniques from DHTs and tuple spaces

THE KEY-VALUE ABSTRACTION

Data Storage 8

• Business

Key → Value

• twitter.com

Tweet id → information about tweet

• amazon.com

Item number → information about it

• kayak.com

Flight number → information about flight
e.g., availability

• yourbank.com

Account number → information about it

MANY KEY-VALUE EXAMPLES

Data Storage 9

Yes, sort of… but not exactly

Relational Database Management Systems (RDBMSs)

have been around for ages

• MySQL is the most popular among them

• Data stored in tables composed by rows

• Schema-based, i.e., structured complete tables

• Each row (data item) in a table has a primary key that is
unique within that table

• Queries by using SQL (Structured Query Language)

• Supports joins and foreign keys

…

IS NOT THAT JUST A DATABASE?

Data Storage 10

Example SQL queries
1. SELECT zipcode FROM users WHERE name = “Bob”;
2. SELECT url FROM blog WHERE id = 3;

3. SELECT users.zipcode, blog.num_posts FROM users JOIN blog ON

users.blog_url = blog.url;

RELATIONAL DATABASES EXAMPLE

Data Storage 11

user_id name zipcode blog_url blog_id

101 Alice 12345 alice.net 1

422 Charlie 45783 charlie.com 2

555 Bob 99910 bob.bloogspot.com 3

Users Tables

Primary keys

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.bloogspot.com 4/2/13 10003

3 charlie.com 6/15/14 7

Blog Tables

Foreign keys

Data are extremely large and unstructured

Lots of random reads and writes

Sometimes write-heavy

Foreign keys rarely needed

Joins rare

Typically not regular queries and sometimes very
forecastable (so you can prepare for them)

In other terms, you can prepare data for the usage you
want to optimize

MISMATCH WITH TODAY WORKLOADS

Data Storage 12

• Speed in answering

• No Single point of Failure (SPoF)

• Low TCO (Total Cost of Operation) or efficiency

• Fewer system administrators

• Incremental Scalability

Scalability

• Scale out, not up

What?

Scalability horizontal, not vertical

REQUIREMENT OF TODAY WORKLOADS

Data Storage 13

Scale up => grow your cluster capacity by replacing more

powerful machines

the so-called vertical scalability
• Traditional approach
• Not cost-effective, as you are buying above the sweet spot on

the price curve
• and you need to replace machines often

Scale out => incrementally grow your cluster capacity by

adding more COTS machines (Components Off The Shelf)

the so-called horizontal scalability
• Cheaper and more effective
• Over a long duration, phase in a few newer (faster) machines

as you phase out a few older machines
• Used by most companies who run datacenters and clouds

today

SCALE OUT, NOT SCALE OUT

Data Storage 14

NoSQL = “Not only SQL”

Necessary API operations: get(key) and put(key, value);

• and some extended operations, e.g., “CQL Language” in
Cassandra key-value store

Tables

• Similar to RDBMS tables, but they …

• Are unstructured: do not have schemas
Some columns may be missing from some rows

• Do not always support joins nor have foreign keys

• Can have index tables, just like RDBMSs

“Column families” in Cassandra
“Table” in HBase
“Collection” in MongoDB

KEY-VALUE/NOSQL DATA MODEL

Data Storage 15

Unstructured

Columns Missing of
some Rows

No schema imposed

No foreign keys

Joins may not be
supported

KEY-VALUE/NOSQL DATA MODEL

Data Storage 16

user_id name zipcode blog_url

101 Alice 12345 alice.net

422 Charlie charlie.com

555 Bob 99910 bob.bloogspot.com

id url last_updated num_posts

1 alice.net 5/2/14 332

2 bob.bloogspot.com 10003

3 chalie.com 6/15/14 7

Key Value

Key Value

NoSQL systems can use column-oriented storage

RDBMSs store an entire row together (on a disk)

NoSQL systems typically store one column together (also a
group of columns)

Entries within a column are indexed and easy to locate, given a
key (and vice-versa)

Why?

• Range searches within a column are fast since you do not
need to fetch the entire database

e.g., Get me all the blog_ids from the blog table that were
updated within the past month;

Search in the the last_updated column, fetch corresponding
blog_id column, without fetching the other columns

COLUMN-ORIENTED STORAGE

Data Storage 17

A distributed key-value store intended to run in a
datacenter (and also across DCs)

Originally designed at Facebook

Open-sourced later, today an Apache project

Some of the companies that use Cassandra in their
production clusters

• IBM, Adobe, HP, eBay, Ericsson, Symantec

• Twitter, Spotify

• PBS Kids

• Netflix: uses Cassandra to keep track of your current
position in the video you are watching

CASSANDRA

Data Storage 18

CASSANDRA ARCHITECTURE

Data Storage 19

Messaging

Layer

Cluster Membership
Failure

Detector

Storage

Layer

Partitioner Replicator

Cassandra API Tools

CASSANDRA ARCHITECTURE

Data Storage 20

Messaging

Layer

Cluster Membership
Failure

Detector

Storage

Layer

Partitioner Replicator

Cassandra API Tools

Cluster Membership
Failure

Detector

Partitioner Replicator

CASSANDRA ARCHITECTURE

Data Storage 21

Messaging

Layer

Cluster

Membership

Failure

Detector

Storage

Layer

Partitioner Replicator

Cassandra API ToolsConfiguration

R/W operation support

In memory caching

Management

Replication

Membership

Consistency level

Cassandra consider a core hierarchy of concepts that

constitute the bottom architecture

Cluster is the set of all possible servers in all data centers

DataCenter is the set of all servers in one DC, organized as a
ring and the base for the replication

Rack is the set of local servers in any data centers,
where at least one rack must be present as the
configuration unit

Server is the instance present on one server, and it can
contain several virtual entities

Virtual server is the VNODE normally controlled automatically
with a Cassandra load of C > 1,2
the goal is 256 on one server

The configuration is automatic and dynamic

CASSANDRA DC MODEL

Data Storage 22

CASSANDRA RING FOR VIRTUAL NODES

Data Storage 23

Cassandra maps virtual nodes in a ring on Nodes (servers)

Partition basic data unit replicated on Vnodes

Controlled by a Partitioner

How do you decide which server(s) a key-value
resides on?

The main point is to map efficiently and in a very suitable
way for the current configuration
based on different data centers and
on the placement of replicas there

So that it can change and adapt fast to needs and

variable requirements and configurations

LET US GO INSIDE CASSANDRA: KEY -> SERVER MAPPING

Data Storage 24

CASSANDRA KEY -> SERVER MAPPING

Data Storage 25

Cassandra uses a Ring-based DHT but without finger tables or routing

Key→server mapping is the ñPartitionerò

N80

0
Say m=7

N32

N45

Backup replicas for

key K13

N112

N96

N16

Read/write K13

Primary replica for

key K13

(Remember this?)

CoordinatorClient

One ring per DC

CASSANDRA KEYSPACES

Data Storage 26

KeySpaces (KS) are namespace container that defines
the data replication on nodes and how they contain
tables, in number of replicas and their replica placement
strategy

KS has a replication factor (RF) and

replica placement strategy:

• Data replication is defined per datacenter

• max (RF) = max(number of nodes) in

only one data center

Two different Replication Strategies based on partition policies:

1. SimpleStrategy: in one Data Center with two strategies of
Partitioning:

a. RandomPartitioner: Chord-like hash partitioning
b. ByteOrderedPartitioner: Assigns ranges of keys to

servers
• Easier for range queries (e.g., Get me all twitter users

starting with [a-b]);

2. SimpleStrategy: NetworkTopologyStrategy: for multi-DC
deployments.

a. Two replicas per DC
b. Three replicas per DC
c. Per Data Center

• First replica placed according to above Partitioner
• Then go clockwise around ring until you hit a different

rack

DATA PLACEMENT STRATEGY

Data Storage 27

Snitches must map IPs to racks and DCs
they are configured in cassandra.yaml config file

Several options:

• SimpleSnitch: Unaware of Topology (Rack-unaware)

• RackInferring: Assumes topology of network by octet of
server IP address

• 101.201.202.203 = x.<DC octet>.<rack octet>.<node
octet>

• PropertyFileSnitch: uses a configuration file

• EC2Snitch: uses EC2

• EC2 Region = DC

• Availability zone = rack

Other snitch options available

SNITCHES

Data Storage 28

Write operations must be lock-free and fast

(no reads or disk seeks)

Client sends write to one coordinator node in Cassandra

cluster:

• Coordinator may be per-key, or per-client, or per-query

• Per-key Coordinator ensures that writes for the key are
serialized

Coordinator uses Partitioner to send query to all replica nodes
responsible for key

When at least X replicas respond, coordinator returns an
acknowledgement to the client

X is the majority

WRITE OPERATIONS

Data Storage 29

Always writable: Hinted Handoff mechanism

• If one replica is down, the coordinator writes to all other

replicas, and keeps the write locally until the crashed replica

comes back up

• When all replicas are down, the Coordinator (front end)

buffers writes (defers it for up to a few hours).

One ring per datacenter

• Per-DC coordinator elected to coordinate with other DCs

• Election done via Zookeeper, which implements distributed

synchronization and group services (similar to JGroups reliable

multicast)

WRITE POLICIES

Data Storage 30

On receiving a write

1. Log it in disk commit log (for failure recovery)
2. Make changes to appropriate memtables

• Memtable = In-memory representation of multiple key-value
pairs

• Typically append-only datastructure (fast)
• Cache that can be searched by key
• Write-back cache as opposed to write-through

Later, when memtable is full or old, flush to disk
• Data File: An SSTable (Sorted String Table) – list of key-value

pairs, sorted by key
• SSTablesare immutable (once created, they donôt change)
• Index file: An SSTable of pairs: (key, position in data sstable)
• Also employs a Bloom filter (for efficient search) – next slide

WRITES AT A REPLICA NODE

Data Storage 31

WRITES: DISTRIBUTED ARCHITECTURE

Data Storage 32

Key (CF1 , CF2 , CF3)

Commit Log

Binary serialized

Key (CF1 , CF2 , CF3)

Memtable (CF1)

Memtable (CF2)

Memtable (CF2)

• Data size

• Number of Objects

• Lifetime

Dedicated Disk

<Key name><Size of key Data><Index of columns/supercolumns><

Serialized column family>

<Key name><Size of key Data><Index of columns/supercolumns><

Serialized column family>

BLOCK Index <Key Name> Offset, <Key Name> Offset

K128 Offset

K256 Offset

K384 Offset

Bloom Filter

(Index in memory)

Data file on disk

Bloom filters are based on compact table to hint for location

They compact the way of representing a set of items so that
checking for existence in set is cheap

Some probability of false positives: an item not in set may
check true as being in set.
But never false negatives

BLOOM FILTER

Data Storage 33

On insert, set all hashed bits.

On check-if-present,

return true if all hashed bits set

False positives rate low

• m=4 hash functions

• 100 items

• 3200 bits

• FP rate = 0.02%

Large Bit Map

0
1

2

3

69

127

111

Key-K

Hash1

Hash2

Hashm

.

.

Data updates accumulate over time and SStables and logs
need to be compacted

▪ The process of compaction merges SSTables, i.e., by merging
updates for a key

▪ Compaction runs periodically and locally at each server

COMPACTION

Data Storage 34

COMPACTION AT WORK

Data Storage 35

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

--

--

--

Sorted

K2 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

--

--

--

Sorted

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

--

--

--

Sorted

MERGE SORT

K1 < Serialized data >

K2 < Serialized data >

K3 < Serialized data >

K4 < Serialized data >

K5 < Serialized data >

K10 < Serialized data >

K30 < Serialized data >

Sorted

K1 Offset

K5 Offset

K30 Offset

Bloom Filter

Loaded in memory

Index File

Data File

D E L E T E D

Delete: do not delete items right away

• Add a tombstone to the log

• Eventually, when compaction encounters tombstone it will
delete item

DELETES

Data Storage 36

Read: Similar to writes, except

Coordinator can contact X replicas (e.g., in same rack)

• Coordinator sends read to replicas that have responded
quickest in past

• When X replicas respond, coordinator returns the latest-
timestamped value from among those X

• (X? We’ll see later)

Coordinator also fetches value from other replicas

• Checks consistency in the background, initiating a read repair
if any two values are different

• This mechanism seeks to eventually bring all replicas up to date

At a replica

• Read looks at Memtables first, and then SSTables

• A row may be split across multiple SSTables => reads need to
touch multiple SSTables => reads slower than writes (but still
fast)

READS

Data Storage 37

READS: DISTRIBUTED ARCHITECTURE

Data Storage 38

Query

Closest replica

Cassandra Cluster

Replica A

Result

Replica B Replica C

Digest Query
Digest Response Digest Response

Result

Client

Read repair if
digests differ

Any server in cluster could be the coordinator

So every server needs to maintain a list of all the other servers
that are currently in the server

List needs to be updated automatically as servers join, leave, and
fail

MEMBERSHIPS

Data Storage 39

1

1 10120 66

2 10103 62

3 10098 63

4 10111 65

2

4

3

Protocol:

• Nodes periodically gossip their

membership list

• On receipt, the local membership list

is updated, as shown

• If any heartbeat older than Tfail, node

is marked as failed

1 10118 64

2 10110 64

3 10090 58

4 10111 65

1 10120 70

2 10110 64

3 10098 70

4 10111 65

Current time : 70 at node 2

(asynchronous clocks)

Address

Heartbeat Counter

Time (local)

Cassandra uses gossip-based cluster membership

(Remember this?)

Suspicion mechanisms to adaptively set the timeout based on
underlying network and failure behavior

Accrual detector: Failure Detector outputs a value (PHI φ)
representing suspicion

Apps set an appropriate threshold

PHI calculation for a member:

▪ Inter-arrival times for gossip messages

▪ PHI(t) = – log(CDF or Probability(t_now – t_last))/log 10

▪ PHI basically determines the detection timeout, but takes into
account historical inter-arrival time variations for gossiped
heartbeats

In practice, φ PHI = 5 => 10-15 sec detection time

SUSPICION MECHANISMS IN CASSANDRA

Data Storage 40

MySQL is one of the most popular query language
(and has been for a while)

On very large data > 50 GB data

MySQL

• Writes 300 ms avg

• Reads 350 ms avg

Cassandra

• Writes 0.12 ms avg

• Reads 15 ms avg

Cassandra in orders of magnitude faster

What is the catch? What did we lose?

CASSANDRA VS. RDBMS

Data Storage 41

If all writes stop (to a key), then all its values (replicas) will
converge eventually

If writes continue, then system always tries to keep converging:

• Moving “wave” of updated values lagging behind the latest
values sent by clients, but always trying to catch up

May still return stale values to clients (e.g., if many back-to-
back writes)

But works well when there a few periods of low writes – system
converges quickly

EVENTUAL CONSISTENCY

Data Storage 42

While RDBMS provide ACID

• Atomicity

• Consistency

• Isolation

• Durability

Key-value stores like Cassandra provide BASE

• Basically Available Soft-state Eventual Consistency

• Prefers Availability over Consistency

RDBMS VS. KEY-VALUE STORES

Data Storage 43

Cassandra has consistency levels

Client is allowed to choose a consistency level for each operation
(read/write)

ANY: any server (may not be replica)

• Fastest: coordinator caches write and replies quickly to client

ALL: all replicas

• Ensures strong consistency, but slowest

ONE: at least one replica

• Faster than ALL, but cannot tolerate a failure

QUORUM: quorum across all replicas in all datacenters (DCs)

• What?

BACK TO CASSANDRA: MYSTERY OF X

Data Storage 44

In a nutshell:

Quorum = majority > 50%

Any two quorums intersect

Client 1 does a write in red
quorum

Then client 2 does read in blue
quorum

At least one server in blue
quorum returns latest write

Quorums faster than ALL, but
still ensure strong consistency

QUORUMS

Data Storage 45

Five replicas of a key-value pair

A second

quorumA quorum

A server

Several key-value / NoSQL stores use quorums
Reads

The Client specifies value of R (≤ N = number of replica)

R = read consistency level

The coordinator waits for R replicas to respond before sending
result to client and (in background) the coordinator checks for
consistency of remaining (N-R) replicas, and initiates read repair if
needed

Writes come in two flavors

• The Client specifies W (≤ N) W = write consistency level.

• The Client writes new value to W replicas and returns. Two
flavors:

• Quorum: Coordinator blocks until quorum is reached

• Asynchronous: Just write and return

QUORUMS OPERATIONS

Data Storage 46

R = read replica count, W = write replica count

Two necessary conditions:

1. W+R > N

2. W > N/2

Select values based on application

• (W=1, R=1): very few writes and reads

• (W=N, R=1): great for read-heavy workloads

• (W=N/2+1, R=N/2+1): great for write-heavy workloads

• (W=1, R=N): great for write-heavy workloads with mostly one
client writing per key

QUORUMS IN DETAILS

Data Storage 47

Client is allowed to choose a consistency level for each
operation (read/write)

ANY: any server (may not be replica)

• Fastest: coordinator may cache write and reply quickly to client

ALL: all replicas

• Slowest, but ensures strong consistency

ONE: at least one replica

• Faster than ALL, and ensures durability without failures

QUORUM: quorum across all replicas in all datacenters (DCs)

• Global consistency, but still fast

LOCAL_QUORUM: quorum in coordinator DC

• Faster: only waits for quorum in first DC client contacts

EACH_QUORUM: quorum in every DC

• Lets each DC do its own quorum: supports hierarchical replies

CASSANDRA CONSISTENCY LEVELS

Data Storage 48

MongoDB is Document-oriented NoSQL tool

Open source NoSQL DB

• In memory access to data

• Native replications toward reliability and high availability (CAP)

• Collection partitioning by using sharding key so to keep the

information fast available and also replicated

• Designed in C++

MONGODB

Data Storage 49

Collection partitioning by using a shard key: hashed-based to
obtain a (not always) balanced distribution

Distributed architecture:

• Router to accept and route incoming requests coordinating with
Config Server

• Shard to store data

Pros

• Adding/removing shards

• Automatic balancing

Cons

• Max document size 16Mb

MONGODB

Data Storage 50

The configuration can grant different properties

In a distributed architecture you may employ replication

Distributed architecture has:

• Several Routers to accept incoming requests

• Config Servers to give access to requests

• Shards to store data

The system is capable

of supporting dynamic

access to documents

MONGODB IN A DEPLOYMENT

Data Storage 51

The configuration can grant different properties. In a
distributed architecture you may define better

MONGODB

Data Storage 52

Based on collections of documents

A collection is a Group of related documents with a shared

common index is Stores data in form of BSON or Binary JSON

(Binary JavaScript Object Notation) documents

{

name: "travis",

salary: 30000,

designation: "Computer Scientist",

teams: ["front-end", "database"]

}

MONGODB DATA MODEL

Data Storage 53

Query all employee names with salary greater than 18000 sorted
in ascending order

db.employee.find({salary:{$gt:18000}, {name:1}}).sort({salary:1})

Collection Condition Projection Modifier

MONGODB: TYPICAL QUERY

Data Storage 54

{salary:25000,Χϒ

{salary:10000,Χϒ

{salary:20000,Χϒ

{salary:2000,Χϒ

{salary:30000,Χϒ

{salary:21000,Χϒ

{salary:5000,Χϒ

{salary:50000,Χϒ

{salary:25000,Χϒ

{salary:20000,Χϒ

{salary:30000,Χϒ

{salary:21000,Χϒ

{salary:50000,Χϒ

{salary:20000,Χϒ

{salary:21000,Χϒ

{salary:25000,Χϒ

{salary:30000,Χϒ

{salary:50000,Χϒ

Insert: insert a row entry for new employee Sally

db.employee.insert({ name: "sally", salary: 15000,
designation: "MTS", teams: ["cluster-management"] });

Update: All employees with salary greater than 18000 get a
designation of Manager

db.employee.update({salary:{$gt:18000}}, {$set: {designation:
"Manager"}}, {multi: true})

Multi-option allows multiple document update

Remove: remove all employees who earn less than 10000

db.employee.remove({salary:{$lt:10000}})

Can accept a flag to limit the number of documents removed

INSERT, UPDATE, REMOVE

Data Storage 55

TYPICAL MONGODB DEPLOYMENT

Data Storage 56

• Data split into chunks,

based on shard key (~

primary key)

• Either use hash or range-

partitioning

• Shard: collection of chunks

• Shard assigned to a replica

set

• Replica set consists of

multiple mongod servers

(typically 3 mongod’s)

• Replica set members are

mirrors of each other

• One is primary

• Others are secondaries

• Routers: mongos server

receives client queries and

routes them to right replica

set

• Config server: Stores

collection level metadata.

Mongod
Mongod

Config

Router

(mongos)
Router

(mongos)

Mongod
Mongod

mongod

Mongod
Mongod

mongod

1

54

3

2

6

Replica Set

Uses an oplog (operation log) for data sync up:

• Oplog maintained at primary, delta transferred to secondary
continuously/every once in a while

When needed, leader Election protocol elects a master

Some Mongod servers do not maintain data but can vote – called
as Arbiters

REPLICATION

Data Storage 57

Secondary

Primary

Secondary
Heartbeat

Write Read

Determine where to route read operation.

Default is primary

Some other options are

• Primary-preferred

• Secondary

• Nearest

Helps reduce latency, improve throughput

Reads from secondary may fetch stale data

READ PREFERENCES

Data Storage 58

Determines the guarantee that MongoDB provides on the success
of a write operation

Default is acknowledged (primary returns answer immediately)

Other options are:

• journaled (typically at primary)

• replica-acknowledged (quorum with a value of W), etc.

Weaker write concern implies faster write time

WRITE CONCERN

Data Storage 59

Determines the guarantee that MongoDB provides on the success
of a write operation

Default is acknowledged (primary returns answer immediately)

Other options are:

• journaled (typically at primary)

• replica-acknowledged (quorum with a value of W), etc.

Weaker write concern implies faster write time

Journaling: Write-ahead logging to an on-disk journal for
durability

(Journal may be memory-mapped)

Indexing: Every write needs to update every index associated with
the collection

WRITE CONCERN

Data Storage 60

Balancing

Over time, some chunks may get larger than others

• Splitting: Upper bound on chunk size; when hit, chunk is split

• Balancing: Migrates chunks among shards if there is an
uneven distribution

Consistency

• Strongly Consistent: Read Preference is Master

• Eventually Consistent: Read Preference is Slave (Secondary
or Tertiary)

• CAP Theorem: With Strong consistency, under partition,
MongoDB becomes write-unavailable thereby ensuring
consistency

BALANCING & CONSISTENCY

Data Storage 61

We have to deal with an enormous amount of data

And we have to change our mind setting

(steaming from the small perspective)

It is most important to change our normal analysis

to suit the new requirements and strategies

BIG DATA

Big Volume and Big Data Systems

SETTINGS for the specific pattern in the large

VERY COMMON → easy to be offered

• Big Data storage, access and management

• Data batch processing

• Stream data processing

• ….

Many other patterns of work, less common

Data and any service available on them as the input

ANALYSIS OF BIG DATA

Big Volume and Big Data Systems

MAIN GENERAL PROPERTIES <> enormous data volume

• Distribution & Decentralization

• Scalability

• Efficiency

• Quality of Service

MAIN SYSTEM REQUIREMENTS for SUPPORT

• Long life cycle (→ ꝏ)

• Open source

• Interoperability and standard (no lock in)

• Remote control (dashboard for monitoring)

• Transparency (black box) and Visibility

BIG DATA SETS AND ENVIRONMENTS

Big Volume and Big Data Systems

RESOURCES as UNIFYING concepts

ISSUES for RESOURCES

• Resource Sharing (multicast)

• Resource Distribution (events)

• Resource Synchronization

• Resource Replication

• Resource Control

• Resource Configuration

• Resource Timing

ANALYSIS OF BIG DATA AND SERVICES

Big Volume and Big Data Systems

RESOURCES as UNIFYING concepts

ISSUES for RESOURCES RUN TIME

• Resource Sharing (multicast)

• Resource Distribution (events)

• Resource Synchronization

• Resource Replication

• Resource Control

• Resource Configuration STATIC

• Resource Timing BEFORE RUN TIME

ANALYSIS OF BIG DATA AND SERVICES

Big Volume and Big Data Systems

Access via Web, many protocols

Metamodel → remote access to Cloud, DC, System

Black box approach

REMOTE DASHBOARD

User visible model of solution

User model (Map and Reduce functions, …)

Internal support

Architecture decisions and resource support

IT REMOTE INFRASTRUCTURE

Big Volume and Big Data Systems

Technical properties

• Dynamicity and adaptability

• Fault tolerance or Replication
(availability and reliability)

• Loose Consistency

• Group communication

• Data configuration and access

• Resource life cycle support

• Transparency

• Low intrusion

• Time awareness

IT PROPERTIES

Big Volume and Big Data Systems

